

1

Failure Recovery Issues in Large Scale, Heavily Utilized Disk Storage Systems

Garth Gibson, Paul Nowoczynski*, Milo Polte, Lin Xiao
*Pittsburgh Supercomputing Center, Carnegie Mellon University

1 Abstract
Large data is increasingly important to large-scale computa-
tion and data analysis. Storage systems with petabytes of
disk capacity are not uncommon in high-performance com-
puting and internet services today and are expected to grow
at 40-100% per year. These sizes and rates of growth render
traditional, single-failure-tolerant (RAID 5) hardware con-
trollers increasingly inappropriate. Stronger protection
codes and parallel reconstruction based on parity decluster-
ing are techniques being employed to cope with weakening
data reliability in these large-scale storage systems. The first
tolerates more concurrent failures without data loss at the
cost of increasing redundancy overhead. The second paral-
lelizes failure recovery from the traditional per-subsystem
hardware RAID reconstruction to parallel and distributed
reconstruction over all disks and RAID controllers. This
paper explores the differences and similarities between
large-scale storage systems in high-performance computing
(HPC) and data-intensive scalable computing (DISC) for
internet services, and revises reliability models for these
storage systems to incorporate stronger redundant encoding
and the use of parallel reconstruction. A modern example,
for systems of 1-5 petabytes, suggests that triplication can
have as much as 10 times lower rates of lost data per year,
even when its number of components has to be almost 3
times more for the same amount of user data, but that this
difference may be as small as 1 to 10 bytes lost per year.
Many might decide that this factor of ten is not significant
in light of other sources of information loss.

2 The Problem: Huge Collections of Disks
With petascale computers now in use there is a pressing
need to anticipate and compensate for a probable increase
in failure and application interruption rates and in degrading
performance caused by online failure recovery. Researchers,
designers and integrators have generally had too little de-
tailed information available on the failures and interruptions
that even smaller terascale computers experience. The in-
formation that is available suggests that failure recovery
will become far more common in the coming decade, and
that the condition of recovering online from a storage device
failure may become so common as to change the way we
design and measure system performance.
In our prior work in the DOE Petascale Data Storage Insti-
tute (www.pdsi-scidac.org), we collected and analyzed a
number of large data sets on failures in high-performance
computing (HPC) systems [Schroeder06]. The primary data
set we obtained was collected during 1995–2005 at Los
Alamos National Laboratory (LANL) and covers 22 high-
performance computing systems, including a total of 4,750

machines and 24,101 processors. These data cover node
outages in HPC clusters, as well as failures in storage sys-
tems. To the best of our knowledge, this is the largest failure
data set studied in the literature to date, both in terms of the
time-period it spans, and the number of systems and proces-
sors it covers, and the first to be publicly available to
researchers (see [LANL06] for access to the raw data). Us-
ing these data sets and large scale trends and assumptions
commonly applied to future computing systems design, we
projected onto the potential machines of the next decade our
expectations for failure rates, mean time to application inter-
ruption, and the consequential application utilization of the
full machine, based on checkpoint/restart fault tolerance and
the balanced system design method of matching storage
bandwidth and memory size to aggregate computing power
[Grider06]. Not surprisingly, if the growth in aggregate
computing power continues to outstrip the growth in per-
chip computing power, more and more of the computer’s
resources may be spent on conventional fault recovery
methods. We envisioned highly parallel simulation applica-
tions being denied as much as half of the system’s resources
in five years, for example, and recommended new research
on application fault tolerance schemes for these applications
– process pairs [McEvoy81] mirroring of all computation is
such a scheme that would halt the degradation in utilization
at 50% [Schroeder07b].
The leading short-term alternative – adding a new tier of
memory that is less expensive than DRAM, probably based
on NAND flash, to buffer checkpoints allows the copying
from checkpoint memory to disk to take longer because the
average rate of writing checkpoints is much lower than the
instantaneous rate that primary memory is dumped to
checkpoint memory. This is a one-time improvement, as the
disk system bandwidth still has to improve at the rate of the
time average checkpoint capture, unless checkpoint memory
can be large enough that no checkpoint is retained for long.
Eliminating disk from the checkpoint solution is made
harder by two issues: 1) memory, primary and checkpoint,
are a large fraction of total system cost, and 2) simulation
visualization and data analysis, today mostly piggy-backed
on checkpoints, may independently mandate periodic simu-
lation state capture to disk for later, offline processing. It is
unlikely that large scale HPC computer design will soon
abandon its expectation that disk storage bandwidth track
overall computational performance.
Our interest in large-scale cluster node failure originated in
the key role of high bandwidth storage in checkpoint/restart
strategies for application fault tolerance [Elnozahy02]. Al-
though storage failures are often masked from interrupting
applications by RAID technology [Patterson88], recon-
structing a failed disk can impact storage performance

2

noticeably [Holland94] and, if too many failures occur, stor-
age system recovery tools can take days to bring a large file
system back online, perhaps without all of its user’s original
data. Moreover, disks have traditionally been viewed as
perhaps the least reliable hardware component, due to the
mechanical aspects of a disk. We have been able to obtain
datasets describing disk drive failures occurring at HPC
sites and at a large internet service provider. The data sets
vary in duration from 1 month to 5 years and cover a total of
more than 100,000 hard drives from four different vendors,
and include SCSI, fibre-channel and SATA disk drives. For
more detailed results see [Schroeder07a].
For modern drives, the datasheet MTTFs are typically in the
range of 1-1.5 million hours, suggesting an annual failure
and replacement rate (ARR) between 0.58% and 0.88%. In
the data, however, field experience with disk replacements
differs from datasheet specifications of disk reliability. Fig-
ure 1 shows the annual failure rate suggested by the
datasheets (horizontal solid and dashed line), the observed
ARRs for each of the datasets and the weighted average
ARR for all disks less than five years old (dotted line). Fig-
ure 1 shows a significant discrepancy between the observed
ARR and the datasheet AFR for all datasets. While the data-
sheet AFRs are between 0.58% and 0.88, observed ARRs
vary from 0.5% to as high as 13.5%. That is, the observed
ARRs are by up to a factor of 15 higher than datasheet
AFRs. The average ARR over all datasets (weighted by the
number of drives in each data set) is 3.01%. Even after
removing all COM3 data, which exhibits the highest ARRs,
the average ARR was still 2.86%, 3.3 times higher than
0.88%, the higher of the often quoted AFR range.
With this cluster and disk failure data we developed various
projections. Some of these projections are not relevant for
this proposal, but the implications on disk drive failure re-
covery are central.
First, our projections expect integrators to deliver petascale
computers according to the long-standing trends shown on
top500.org [top500]; that is, the aggregate compute per-
formance doubles every year. Second, our projections
assume that integrators will continue to build balanced sys-
tems; that is, storage size and bandwidth will scale linearly
with memory size and total compute power [Grider06]. As a

baseline for our projections, we model the Jaguar system at
Oak Ridge National Laboratory (ORNL) after it is ex-
panded to a Petaflop system in 2008. Jaguar then had
around 11,000 processor sockets (dual-core Opterons), 45
TB of main memory and a storage bandwidth of 55 GB/s
[Roth06]. While the architecture of other 2008 petascale
machines, such as LANL’s Roadrunner [Koch06], differs
from Jaguar in its use of hybrid nodes employing vec-
tor/graphics co-processors, our predictions for its failure
rates are little different from Jaguar, so we do not include
separate lines for it on our graphs.
First, individual disk bandwidth grows at a rate of about
20% per year, which is significantly slower than the 100%
per year growth rate that top500.org predicts for total proc-
essing power. To keep up, the number of disk drives in a
system will have to increase at an impressive rate. Figure 2
projects the number of drives in a system necessary to (just)
maintain balance. The figure shows that, if current technol-
ogy trends continue, by 2018 a computing system at the top
of top500.org chart will need to have more than 800,000
disk drives. Managing this number of independent disk
drives, much less delivering all of their bandwidth to an
application, will be extremely challenging for storage sys-
tem designers.
Second, disk drive capacity will keep growing by about
50% per year, thereby continuously increasing the amount
of work needed to reconstruct a failed drive, and the time
needed to complete this reconstruction when a single RAID
controller does all of the work of each failed disk recon-
struction. While other trends, such as decrease in physical
size (diameter) of drives, will help to limit the increase in
reconstruction time, these are single step decreases limited
by the poorer cost effectiveness of the smaller disks. Overall
we think it is realistic to expect an increase in reconstruction
time of at least 10% per year using the current hardware
RAID controller model. Assuming that reconstruction time
was about 30 hours and that 3% of drives in a system fail
per year on average (as shown in Figure 1), we projected the
number of concurrent reconstructions going on in future
HPC systems, as shown in Figure 3. The figure indicates
that in the year 2018, on average, nearly 300 concurrent
reconstructions will be in progress at any time.

Figure 1: Comparison of data sheet annual failure rates
(horizontal dotted lines) and the observed annual re-
placement rates of disks in the field.

Figure 2 (left) and 3 (right). (2) Number of disk drives in
the largest of future systems. (3) Number of concurrent
reconstructions in the largest of future systems.

3

The operating model for HPC storage calls for it to fully
mask internal errors – HPC fault tolerance requires storage
to survive all failures, and to absorb and return checkpoints
at full speed at all times. While in practice this does not re-
quire enterprise-class availability, five minutes of downtime
per year or less, it does means that hundreds of concurrent
recoveries at all times must be managed with essentially no
degradation in availability and performance. Yet each re-
covery typically processes tens of terabytes, and the
minimum time needed to simply read (or write) an entire
disk is typically multiple hours, given 100% of the disk’s
resources. Even a single RAID controller dramatically
slowed down by a reconstruction is likely to slow down the
entire storage system by the same dramatic reduction be-
cause highly parallel, highly striped data access uses all
storage devices evenly.
It seems quite clear that petascale storage systems designers
will be spending a large fraction of their efforts on fault
tolerance inside the storage systems on which petascale ap-
plication fault tolerance depends.
3 Parallel Reconstruction
There are two principle techniques for addressing pressing
concerns of ever larger numbers of disks in the storage sys-
tem: (1) redundant data encodings tolerant of more failures
[Plank09], and (2) acceleration of the failed disk reconstruc-
tion process. The former is taking place, as many large
storage installations are using double-failure-tolerant RAID
6 and some vendors have begun to recognize that reliability
is improved when more sets of N concurrent failures are
recoverable even if every set of N concurrent failures are
not recoverable [Hafner05].
Greater levels of concurrent failure tolerance by itself do
nothing to address the duration of a reconstruction, and
therefore the time-averaged number of concurrent recon-
structions. Instead, one might reasonably expect that higher
levels of failure tolerance will require more complex codes,
slowing down reconstruction. Moreover, each RAID sub-
system, typically containing one or more sets of 8 to 16
disks in a single RAID group, independently detects and
recovers from disk failures, so failure recovery and per-
formance degradation during failure recovery is not load
balanced.
Parity declustering is a technique for distributing RAID

groups evenly over all RAID controllers [Holland94]. Fig-
ure 4 shows an example parity declustering organization.
Provided that replacement disk space and RAID controller
functionality are also distributed, disk failure reconstruction
is parallelized and reconstruction can be done much faster in
large systems and evenly load balanced.
Parallel reconstruction, enabled by parity declustering, pro-
vides a powerful tool for coping with the predicted hundreds
of concurrent reconstructions in large systems. Parallel re-
construction causes reconstruction speed to scale up in
proportion to the size of the storage system. Implemented in
the Panasas PanFS storage system, Figure 5 shows how re-
construction speed increases linearly with large storage
systems. Because parity groups are evenly distributed over
all disks, each block lost on a failed disk is equally likely to
be associated with every other disk by parity group, and
provided many parity groups are reconstructed in parallel,
all disks contribute to the reconstruction effort equally.
With parallel reconstruction, reconstructions can be done
faster in large clusters, yielding much less overlapping of
reconstructions. Even more powerfully, this technique
scales with system size, so its utility becomes more compel-
ling as systems get larger.
However, data reliability is impacted by parity declustering
in two countering ways. While shorter reconstructions re-
duces the window of time that future disk failures may
render current reconstructions unable to recover data, dis-
tributing parity groups exposes potential data loss to more
combinations of disk failures. That is, if the parity groups of
a double-failure-tolerant storage system are declustered,
then each time three disks are concurrently failed, there is a
good chance that some parity group included all three of
these disks, while in a traditional multiple RAID 6 storage
system, if at least two of the failed disks are in different
RAID 6 arrays, there is no chance that data is not protected
by RAID.
Early work on parity declustering found that these two fac-
tors – smaller time windows of vulnerability to additional
failures and larger sets of disks entwined in the same parity

Figure 4. An example of parity declustering. Parity groups
of four components, each designated by a single letter la-
bel, are spread over eight disks evenly.

Figure 5: The speed that lost data can be recon-
structed, in megabytes per second, as a function of
the number of shelves (20 disks and a controller in
each) in a PanFS storage system employing parity de-
clustering and parallel reconstruction.

4

groups – cancelled each other, causing data reliability to be
neither hurt nor improved by parity declustering [Hol-
land94].
Parity declustering and parallel reconstruction, coupled with
more powerful redundant encodings, are the principle tools
for making ever-larger storage systems reliable and perfor-
mant.

While parallel file systems used in HPC clusters and
supercomputers was the starting point for this research, we
are concerned with all large-scale storage systems. In par-
ticular, Data-Intensive Scalable Computing (DISC) systems
such as used by internet services clusters are of comparable
scale and performance to HPC systems. Figure 6 compares
the system architecture of most HPC systems (a) to DISC
systems (b).
Most DISC applications are characterized by parallel proc-
essing of massive datasets stored in the underlying shared
storage system. Such distributed programming abstractions
are provided by purpose-built frameworks like MapReduce
[Dean04], Hadoop [Hadoop] and Dryad [Isard07]. These
frameworks divide a large computation into many tasks that

are assigned to run on nodes that store the desired input
data, and avoiding a potential bottleneck resulting from
shipping around terabytes of input data. Hadoop, and its
data intensive file system HDFS [Borthakur09a], are open-
source implementations of Google’s MapReduce and Goo-
gleFS [Ghemawat03]. Our exploration of DISC systems is
based on Hadoop’s use of the HDFS data intensive file sys-
tem.

4.1 Parallel versus Data Intensive File Systems
At a high level HDFS’s architecture resembles an HPC par-
allel file system. HDFS stores file data and metadata on two
different types of servers. All files are divided into chunks
that are stored on different data servers. The file system
metadata, including the per-file chunk layout, is stored on
the metadata server(s). For single writer workloads, HDFS
differs from HPC parallel file systems primarily in its layout
and fault tolerance schemes.
HDFS assigns chunks to compute nodes at random, while
HPC file systems use a round robin layout over dedicated
storage servers, and HDFS exposes a file’s layout informa-
tion to Hadoop. This exposed layout allows the Hadoop’s
job scheduler to allocate tasks to nodes in a manner that (1)
co-locates compute with data where possible, and (2) load
balances the work of accessing and processing data across
all the nodes. Thus, the scheduler can mask sub-optimal file
layout resulting from HDFS’s random chunk placement
policy with lots of work at each node [Tantisiriroj08]. The
second big difference between HDFS and HPC file systems
is its fault tolerance scheme: it uses triplication instead of
RAID. We address this difference in the next section.
Given the growing importance of the Hadoop MapReduce
compute model, we ask, “Could we use a mature HPC par-
allel file system in-place of a custom-built DISC file system
like HDFS?” While most HPC file systems use separate
compute and storage systems for flexibility and manageabil-
ity, most HPC parallel file systems can also be run with data
servers on each compute node.
We built a non-intrusive shim layer to plug a real-world
parallel file system (the Parallel Virtual File System, PVFS
[PVFS2]), into the Hadoop framework storing data on com-
pute nodes [Tantisiriroj08]. This shim layer queries file
layout information from the underlying parallel file system
and exposes it to the Hadoop layer. The shim also emulates
HDFS-style triplication by writing, on behalf of the client,
to three data servers with every application write.

4 Data Intensive Storage Systems

(a)

(b)

Figure 6: HPC and DISC storage models. Most HPC
storage (a) separates data servers (DS) from compute
servers in dedicated subsystems, each internally pro-
tected by RAID controllers. DISC systems (b), however,
often fold storage back into the application servers. Both
systems separate metadata servers (MDS).

Figure 7: By exposing the file layout mapping through
a non-intrusive shim layer, a production parallel file
system (PVFS) can match the performance of HDFS on
a widely used Hadoop-style workload.

5

Figure 8 shows that for a typical Hadoop application (grep
running on 32 nodes), the performance of shim-enabled
Hadoop-on-PVFS is comparable to that of Hadoop-on-
HDFS. By simply exposing a file’s layout information,
PVFS enables the Hadoop application to run twice as fast as
it would without exposing the file’s layout.
Most parallel large-scale file systems, like PVFS, already
expose the file layout information to client modules but do
not make it available to client applications. For example, the
new version 4.1 of NFS (pNFS) delegates file layout to cli-
ent modules to allow the client OS to make direct access to
striped files [NFSv4.1]. If these layout delegations were
exposed to client applications to use in work scheduling
decisions, as done in Hadoop or MapReduce, HPC and
pNFS file systems could be significantly more effective in
DISC system usage.

4.2 Replication versus RAID in DISC Systems
To tolerate frequent failures, each data block in a data inten-
sive file system is typically triplicated and therefore capable
of recovering from two simultaneous node failures. Though
simple, a triplication policy comes with a high overhead
cost in terms of disk space: 200%. Traditional RAID sys-
tems typically exhibit capacity overheads between 10% and
25% -- about 10 times smaller! We have built DiskReduce,
an experimental application of RAID in HDFS to save stor-
age capacity.
In HDFS, files are divided into blocks, typically 64 MB,
each stored on a data node. Each data node manages all file
data stored on its persistent storage. It handles read and
write requests from clients and performs “make replica”
requests from the metadata node. There is a background
process in HDFS that periodically checks a missing blocks
and, if found, assigns a data node to replicate the block hav-
ing too few copies.
DiskReduce exploits HDFS’s background re-replication to
replace copies with lower overhead RAID encoding. In a
manner reminiscent of early compressing file systems
[Cate91], all blocks are initially triplicated; that is, uncom-

pressed. Where the background process looks for
insufficient number of copies in HDFS, DiskReduce instead
looks for blocks not encoded, and replaces copies with en-
codings. Because it is inherently asynchronous, DiskReduce
can further delay encoding when space allows, to allow ac-
cesses temporally local to the creation of the data choice
among multiple copies for readback.
We have prototyped DiskReduce as a modification to
Hadoop Distributed File System (HDFS) version 0.20.0.
Currently, the DiskReduce prototype supports only two en-
coding schemes [Plank08]: “RAID 6” and “RAID 5 and
Mirror”, in which a RAID5 encoding is augmented with a
second complete copy of the data.
Our prototype runs in a cluster of 63 nodes, each containing
two quad-core 2.83GHz Xeon processor, 16 GB of memory,
and four 7200 rpm SATA 1 TB Seagate Barracuda ES.2
disks with 32MB buffer. Nodes are interconnected by 10
Gigabit Ethernet. All nodes run the Linux 2.6.28.10 kernel
and use the ext3 file system for storing HDFS blocks.
To get a feel for its basic encoding functionality in our pro-
totype, we set up a 32 node partition and had each node
write a 16 GB file into a DiskReduce-modified HDFS
spread over the same 32 nodes using RAID groups of eight
data blocks each.
Figure 9 shows the storage usage and encoding bandwidth
consumed for the encoding of this 512GB of data. While
this experiment is simple, it shows the encoding process
removing 400GB and 900GB for the RAID 5 and mirror
and RAID 6 schemes, respectively, bringing overhead down
from 200% to 113% and 25%, respectively.
Based on a talk about our previous DiskReduce work, a
userspace RAID 5 and mirror encoding scheme has been
implemented on top of HDFS by HDFS developers
[Borthakur09b]. We are working closely with Hadoop and
HDFS developers to further explore RAID 6 encodings,
delaying of encoding to enable reading soon after write the
full benefit of multiple copies, and to quantify this benefit,
and delaying of deletion to trade capacity against the encod-
ing cleanup of a partial RAID set delete.
Similarly HPC parallel file systems have begun to imple-

 (a) Triplication (b) RAID 5 and Mirror

(c) RAID 6

Figure 8: Codewords protecting user data against any
double node failure in DISC storage systems using
DiskReduce.

Figure 9: Storage capacity utilized and rate capacity is
recovered by Disk Reduce background encoding.

6

ment RAID over nodes, instead of just RAID in hardware,
led by a spin off of our prior work in scalable file systems
[Welch08]. In our long-term vision for data intensive stor-
age systems we see a convergence of the semantic power of
HPC parallel file systems with the high degrees of node
failure tolerance in data intensive file systems.

5 Reliability Modeling
The reliability models built for RAID are based on non-
declustered storage. The original model [Patterson88]
changed little when RAID 6 was commercialized [Cor-
bett04], although a higher rate of secondary failures was
added as a “correlation” factor on the disk failure rate.
Moreover, both the original and revised models retain the
simple notion that reliability should be measured as the time
until any data is lost, because loss of any data is cata-
strophic, and differentiation of the amount lost is not
pertinent. Mean time until disk failure, the inverse of annual
failure rate, is measured in decades to centuries, and mean
time until data loss in RAIDs is orders of magnitude larger.
Yet there is no direct utility to a model of centuries until
data loss because computing devices are rarely operated
more than a decade, and few have warrantees for more than
five years.
The most useful interpretation of mean time until data loss
assumes data loss events have a Poisson distribution, so the
probability of data loss in a short time period (days or weeks
in practice) is proportional to the reciprocal of mean time
until data loss. In this sense doubling the mean time until
data loss halves the probability of data loss in a short time
period.
Yet even these simplistic models are rarely used in practice.
The most practiced model for reliability is the maximum
number of concurrent failures of any disks that is always
recoverable based on the redundant encoding. In this sense
the metric in practice is: any single disk failure loses data,
all single disk failures are tolerated, all double disk failures
are tolerated, and, in the future, all triple disk failures are
tolerated. With this weak model, the 200% overhead (three
copies) triplicated storage of DISC systems has equivalent
failure protection to the 25% overhead (with groups of eight
disks) RAID 6 storage in HPC systems. Of course, no one
expects this to be true, and the traditional models for RAID
reinforce this expectation [Patterson88, Corbett04].
In this work we improve traditional models for redundant
disk storage reliability in two ways: the inclusion in the
model of parity declustering and expanded metrics for the
amount of data lost annually rather than simply the expected
number of loss events.

5.1 Large Scale Storage Failure Model
In this work we focus on catastrophic failure of magnetic
disks. This is not the only failure such disks experience.
For example, unrecoverable read errors, or latent sector er-
rors are non-catastrophic failures in which a small amount
of data on the disk is not readable, although rewriting the
storage region may be subsequently readable
[Bairavasundaram07]. Although such failures are sometimes

repaired by RAID reconstruction, they are also minimized
by scrubbing for them in the background, by selecting disk
products with stronger per-sector codes and by multiple
sector protection codes inside each disk [Dholakia06].
When RAID reconstruction is used to recover from latent
sector errors there is one important special case: each latent
sector error experienced during the reconstruction of the
maximum tolerable disk failures causes a parity stripe to be
unrecoverable. In traditional RAID systems the loss of a
single parity stripe causes the enclosing volume to be un-
available until manual repair can be invoked. This failure
mode is often quoted as the driving reason for the introduc-
tion into enterprise storage systems of double failure
tolerating codes, RAID 6 [Corbett04].
Alternatively, many of the declustered parity and replicated
storage solutions can suffer the loss of a single file without
taking the enclosing volume being taken offline. In these
systems latent sector errors are another source of small peri-
odic data loses. In the following model, these sources of
data loss have not yet been incorporated. The model is also
not designed to model failover of an entire data center to a
backup data center, as is done in business continuity solu-
tions and alternative internet service centers. Our models are
intended to be used to contribute to decisions about when to
invoke these much more expensive replication solutions.
Disk failures, disk repairs, data loss events are often sim-
plistically modeled as Poisson events, with exponential
interarrival times [Patterson88, Corbett04]. Although it is
demonstrable that these events fail statistical tests for having
a Poisson distribution [Schroeder07a, Pinheiro07], we seek
generalized models of fundamental differences, and do not
want to overwhelm the interpretation of these fundamental
differences with a level of detailed modeling that is both
product specific and likely to impart a contribution smaller
than the inherent errors introduced by unmodeled factors
such as human error, for example. We follow the example
of a higher rate of Poisson disk failures after a first failure in
a run used in the models given when RAID 6 products were
introduced [Corbett04].
We employ a renewal reward stochastic Markov model to
compare triplication and RAID 6 reliability in large storage
systems.
The model parameters (rates are per hour) are:

Figure 10: Basic model of disk failures and repair
completions, modeled as Poisson processes. On each
failure there is a probability of data loss, which
accumulates into the overall expectation of the rate of
data loss.

7

N = total number of disks
d = total number of data blocks stored in each disk
G = number of unreplicated data blocks in a group
(not including blocks with computed “check” codes)
D = total number of non-redundant user data blocks
μ = (Poisson) repair rate during a single failure repair
λ = (Poisson) failure rate for a single disk
c = correlation of disk failures; after the 1st in a run of
failures, each disk experiences a failure rate is cλ.

In the zeroeth state the total rate of new disk failures is Nλ
and there is no chance of data loss. In all other states each
disk failure rate is elevated by correlated failure events.
Since we are modeling very large systems the failure rates
in non-zero states is approximately cNλ.
Repair, the process of reconstructing the data lost when a
disk fails, starts with a detection and diagnosis phase. Quite
often storage nodes can be non-responsive for non-trivial
amounts of time; for example, rebooting a node can easily
be a multiple minute operation. Systems overly eager to
reconstruct an unavailable disk can induce large amounts of
unnecessary work, since unavailable nodes often return to
service. For this reason, practical repair rates need to take
into consideration a lower bound on repair time based such
detection and diagnosis phases. Anecdotal evidence sug-
gests this lower bound is multiple minutes, and perhaps as
large as a large fraction of an hour.
Once reconstruction is started, it could proceed as fast as the
time it takes the entire system to read the amount of data
equivalent to the size of G disks, dG blocks, spread evenly
over all disks (G is 1 for replication schemes). Many instal-
lations will want this to be throttled to consume a small
fraction of the bandwidth of each disk, so that user work-
load (such as taking checkpoints) will not be significantly
degraded. Assuming that this throttling limits the total
bandwidth used for reconstruction, the repair rate, μ, will be
the same from all states. However, with triplication only one
block has to be read to reconstruct each failed block but
with RAID 6 each failed block is reconstructed as a function
of G surviving blocks, so RAID 6 has G times as much
reading work to do, and a correspondingly slower repair rate
(when throttled to a bandwidth limit).
Triplication and RAID 6, our canonical comparison, yield
different amounts of user data from the same number of
disks, because of their different encodings. Triplication
schemes provide D = dN/3 user data blocks, since two
blocks of every triple contain identical copies and cannot
freely vary; while RAID 6 schemes provide D = dNG/(G+2)
user data blocks, since 2 of every G+2 blocks in a group are
do not contain freely variable user data.
The expected amount of data lost in each failure event ac-
cumulates to the expected data loss rate for the model. With
double failure tolerant codes like triplication and RAID 6,
no data loss is possible in states 0 and 1, but once in states 2
or larger, each new disk failure may lead to an unreconstruc-
table block because that group of blocks may suddenly have
three lost blocks, while the code can only reconstruct the
lost data of up to two lost blocks.

With a triplication encoding, in state i (that is, there are i
concurrent disks being reconstructed), when another disk
fails each of its d blocks is independently put at risk based
on the location of its two replicas. There are (N-1) choose 2
combinations of these two replicas, all equally likely, and i
choose 2 of these combinations will yield data loss. So for
triplication, the model “reward”, the expected number of
blocks lost, is (Equation 1):

For the RAID 6 encoding the calculation is more complex.
For each block on the newly failed disk, we condition on the
state of the other G+1 blocks in its group. If zero or only
one of these blocks is also failed, no data is lost.
If the newly failed block is the third failed block in the
group, then these three blocks are newly unreconstructable,
and with probability G/(G+2) each of these contains user
data. Given a specific newly failed block, there are N-1
choose (G+2-1) other blocks in the group. Of these we want
two other failed and G-1 not failed, so we want the product
of i choose 2 ways to pick the failed blocks and N-i-1
choose G-1 ways to select the non failed blocks from the
possible non-failed disks.
For each case were the newly failed block is part of a group
that has already lost data, that is, suffered three loses al-
ready, the amount additionally lost by this newly failed
block is 1, prorated by the odds this is a data block,
G/(G+2). These cases correspond to j = 3 through i pre-
existing failed blocks with probabilities i choose j times N-i-
1 choose G+2-j over N-1 choose G+1, using the same
counting argument as above. Combining these counting
arguments, for RAID 6, the expected number of blocks is
(Equation 2):

5.2 Numeric Examples
Our model was coded into Mathematica and run through a
few interesting cases.
Consider storage systems of one to five petabytes of user
data (D) built from 2 terabyte disks, capable of sustaining
50 MB/second each, where each disk and the entire system
80% utilized. For illumination of reliability in DISC storage
systems in particular, as with DiskReduce we have software
for triplication and RAID 6, we use disk blocks of 64 mega-
bytes, typical in DISC storage such as HDFS. Parameter d is
determined as 2 TB / 64 MB * 80%.
Disk failure rates are set by our prior work to 2% failing per
year and repair rates are set to 10% of a peak rate deter-
mined by the amount to be read divided by the number of
disks, each providing 50 MB/second. We have not yet ex-
plored failure correlations other than c=1.

8

RAID 6 groups contain eight data blocks and two check
blocks.
Figure 11 shows this comparison when it takes about an
hour for the storage system to decide to initiate reconstruc-
tion. The primary implication in Figure 11 is the relatively
low rate of data loss in all cases: less than 10 bytes per year.
This is easily tolerable, and suggests that real world causes
of data loss are probably beyond the scope of this model, or
that the reliability difference between RAID 6 and triplica-
tion is unlikely to matter in practice.
The secondary implication in Figure 11 is the different im-
plications of increasing total data size. Because the amount
of user data is held constant, there are almost three times
more disks in a system using triplication than one using
RAID 6. This means that overall disk failure rates grow
three times faster in triplication, yet repair rates in both are
linear in the number of disks, and as the systems get larger
repair is increasingly dominated by the detection and diag-
nosis phase of repair.
It is probably not a surprise to see that RAID 6 annual data
loss rates in small systems are much larger than in systems
using triplication, perhaps because of the benefit as the sys-
tem gets larger of fewer and fewer data loss cases as
percentage of total cases is larger with the initially higher
loss rates of RAID 6.

6 Related Work
Almost all enterprise and high performance computing stor-
age systems protect data against disk failures using a variant
of the erasure protecting scheme known as RAID [Patter-
son88]. Presented originally as a single disk failure tolerant
scheme, RAID was soon enhanced by various double disk
failure tolerance encodings, collectively known as RAID 6,
including two-dimensional parity [Gibson89], P+Q Reed
Solomon codes [Reed60, Chen94], XOR-based EvenOdd
[Blaum95], and NetApp’s variant Row-Diagonal Parity
[Corbett04]. Lately research is turned to greater reliability

through codes that protect more, but not all, sets of larger
than two disk failures [Hafner05], and the careful evaluation
of the tradeoffs between codes and their implementations
[Plank09].
Networked RAID has also been explored, initially as a
block storage scheme [Long94], then later for symmetric
multi-server logs [Hartman94], Redundant Arrays of Inde-
pendent Nodes [Bohossian01], peer-to-peer file systems
[Weatherspoon32] and is in use today in the PanFS
supercomputer storage clusters [Welch08]. DiskReduce
explores similar techniques, specialized to the characteris-
tics of large-scale data-intensive distributed file systems.
File caching has been widely used in distributed systems to
improve performance [Howard88, Nelson88]. A cache rep-
resentation of data on disk is often applied to balance
performance requirement and storage limit given temporal
locality in data access. The file system in [Cate91] combines
file caching and compression in a two-level: one sector of
the disk holds uncompressed data which can be accessed at
normal disk speed and a sector holds compressed data which
needs to be uncompressed before access. The least recently
used files are automatically compressed. AutoRAID
[Wilkes96] proposes a two-level storage hierarchy imple-
mented in RAID controllers. Active data is kept in one level
mirrored (with two copies) to improve reading bandwidth
(e.g. read data from the copy closer, or read half of the data
from each copy); while inactive data is stored in the lower
level with RAID 5 protection. Migration of data between
two levels is performed in the background based on the
least-recently-written data dynamically determined. Disk-
Reduce also introduces a two-layer representation: data in
triplication and RAID-6 encoded.
In this work, design choices are made based on statistics
(e.g. file size distribution, file access pattern) collected from
clusters for cloud computing. As a comparison, the file size
distribution in supercomputing file systems are reported in
[Dayal08]. The access pattern and deletion pattern of UNIX
BSD 4.2 file system is reported by a trace study in mid 80s
[Ousterhout85]: most of the file accessed are open only a
short time and accessed sequentially; most new information
is deleted or overwritten within a few minutes of its crea-
tion.
Previous works address how to reduce the cost of maintain-
ing RAID consistency (e.g. parity), without compromising
data reliability. AFRAID [Savage96] always applies data
update in real time but shifting parity update to idle cycles
and therefore eliminates the small- update penalty by hiding
the cost, with slight loss of data availability. Paritypoint
[Cormen93] claims it is important for parallel file systems
being able to turn off parity on a per-file basis so that appli-
cations can disable parity update for temporary files and
increase I/O independence. Data is immutable in Disk-
Reduce so RAID set is only updated after deletion. The
check blocks are updated asynchronously like AFRAID, but
deleted blocks are marked in real time. Therefore the consis-
tency is always guaranteed.

Figure 11: Annual data loss rate, in bytes, as a function
of the total amount of user data, in gigabytes, for triplica-
tion and RAID 6. Repair bandwidth is limited to 10% of
peak repair bandwidth and the minimum repair time is 1
hour, including failure detection and diagnosis time.

9

In DiskReduce after deleting blocks in a RAID set, the
space has to be reclaimed by garbage collection. This is
similar to Log-structured file systems [Rosenblum91] where
different heuristics are studied to gather the freed segments
into clean segments with small overhead [Blackwell95].
Finally, our basic approach of adding erasure coding to
data-intensive distributed file systems has been introduced
into the Google File System [Presotto08] and, as a result of
an early version of this work, into the Hadoop Distributed
File System [Borthakur09a]. This paper studies the advan-
tages of deferring the act of encoding.

7 Conclusions and Future Work
Large scale storage systems in high performance computing
(HPC) and data intensive scalable computing (DISC) for
internet services are too large and too heavily utilized to rely
on hardware RAID 5 in each subsystem for data reliability.
Redundancy codes need to protect against at least all double
disk failures, and reconstruction of each failed disk needs to
be parallelized to exploit all the storage and RAID controller
capabilities of the entire storage system. Other differences
between parallel file systems for HPC and data intensive file
systems for internet service are superficial and in the proc-
ess of being minimized. Notably, the storage substrate for
MapReduce (HDFS in Hadoop) can be replaced with a HPC
parallel file system (PVFS) and performance for DISC ap-
plications is not reduced. And RAID 5 and RAID 6
redundancy encoding can be added to HDFS.
In order to better understand the implications of stronger
failure protection codes and parallel reconstruction on stor-
age reliability, we have developed a simple model for the
annual rate of data loss and applied it to triplicated and
RAID 6 storage systems. We advocate annual rate of data
loss instead of mean time until data loss because it is di-
rectly measurable, it differentiates between codes that lose
data in smaller amounts rather than just less often, and be-
cause it draws attention to rates of data loss that are
endurable rather than treating any loss as too expensive to
endure.
In an example analysis of storage systems with a few
petabytes of user data using 2 terabyte disks, DISC-style 64
MB blocks, RAID 6 groups of 8 data blocks and 2 check
blocks, disks with annual failure rates of 2% and parallel
reconstruction throttled to 10% of its peak bandwidth, the
primary implication of our models is that data loss rates are
measured in terms of a few bytes per year. This alone sug-
gests that the high capital costs of triplication are not worth
the factor of 10 improvement in reliability, if that improve-
ment is from 10 to 1 byte lost per year.
This project was an initial exploration of reliability models
for large-scale storage systems. The results included in this
report are promising; reliability modeling for HPC and in-
ternet services can be unified in a manner indicating that it
should apply to other large scale storage systems. A metric
based on the amount of data lost annually is both viable and
exposes intriguing new considerations – that small rates of
data loss may be endurable, and apparently large differ-
ences, in terms of ratios, may “round off” to negligible
differences. Further exploration is recommended.

8 Acknowledgements
This work was primarily supported through a National Ar-
chives and Records Administration supplement to National
Science Foundation Cooperative Agreement NSF OCI-
0852543. Additional support was provided in part by the
Department of Energy, under award number DE-FC02-
06ER25767, by the Los Alamos National Laboratory, under
contract number 54515-001-07, by the National Science
Foundation under awards CNS-0546551 and SCI-0430781,
and by research awards from the Betty and Gordon Moore
Foundation, Google and Yahoo!.
We also thank the member companies of the PDL Consor-
tium (including APC, DataDomain, EMC, Facebook,
Google, Hewlett-Packard, Hitachi, IBM, Intel, LSI, Micro-
soft, NEC, NetApp, Oracle, Seagate, Sun, Symantec, and
VMware) for their interest, insights, feedback, and support.

9 References
[Bairavasundaram07] Bairavasundaram, L. N., Goodson, G. R.,
Pasupathy, S., Schindler, J. 2007. An analysis of latent sector er-
rors in disk drives. In Proceedings of the 2007 ACM
SIGMETRICS international Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS '07), San Diego,
2007.
[Blackwell95] Blackwell, T., Harris, J., Seltzer, M. Heuristic
cleaning algorithms for log-structured file systems. In Proc. of the
1995 Winter USENIX Technical Conference (New Orleans, LA,
January 1995), pp. 277–288.
[Blaum95] Blaum, M., Brady, J., Bruck, J., Menon, J. Evenodd:
An efficient scheme for tolerating double disk failures in raid ar-
chitectures. IEEE Trans. Computers. v 44, 1995.
[Bohossian01] Bohossian, V., Fan, C. C., LeMahieu, P. S., Riedel,
M. D., Xu, L., Bruck, J. Computing in the rain: A reliable array of
independent nodes. IEEE Trans. Parallel and Distributed Systems,
2, 2001.
[Borthakur09a] Borthakur, D., “The hadoop distributed file sys-
tem: Architecture and design.” 2009.
http://hadoop.apache.org/common/docs/current/hdfs_design.html.
[Borthakur09b] Borthakur, D. “HDFS and erasure codes.” Aug
2009. http://hadoopblog.blogspot.com/2009/08/hdfs-and-erasure-
codes-hdfs-raid.html.
[Carns00] Carns, P. H., Walter B. Ligon, I., Ross, R. B., Thakur,
R. Pvfs: a parallel file system for linux clusters. In USENIX
ALS’00: Proc. of the 4th Annual Linux Showcase & Conference,
2000.
[Cate91] Cate, V., T. Gross. “Combining the concepts of compres-
sion and caching for a two-level file system.” In ASPLOS-IV,
April 1991.
[Chen94] Chen, P. M., Lee, E. K., Gibson, G. A., Katz, R. H.,
Patterson, D. A. Raid: High- performance, reliable secondary stor-
age. In ACM Computing Surveys, 1994.
[Corbett04] Corbett, P., English, B., Goel, A., Grcanac, T.,
Kleiman, S., Leong, J., Sankar, S. Row-diagonal parity for double
disk failure correction. In USENIX FAST, 2004.
[Cormen93] Cormen, T., and Kotz, D. Integrating theory and prac-
tice in parallel file systems. In Proc. of the 1993 DAGS/PC
Symposium, 1993.

10

[Dayal08] Dayal, S. Characterizing HEC storage systems at rest.
Tech. Rep. CMU-PDL-08-109, Carnegie Mellon University, 2008.
[Dean04] Dean, J., S. Ghemawat, “Simplified Data Processing on
Large Clusters.” In 6th Symposium on Operating Systems Design
and Implementation (OSDI’04), 2004.
[Dholakia06] Dholakia, A., Eleftheriou, E., Hu, X., Iliadis, I., Me-
non, J., Rao, K. 2006. Analysis of a new intra-disk redundancy
scheme for high-reliability RAID storage systems in the presence
of unrecoverable errors. In Proc. of the Joint Int. Conf. on Meas-
urement and Modeling of Computer Systems (SIGMETRICS
'06/Performance '06, Saint Malo, France, 2006.
[Elnozahy02] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, D. B.
Johnson. A survey of rollback-recovery protocols in message-
passing systems. ACM Computing Surveys, 34(3), 2002.
[Fan09] Fan, B., W. Tantisiriroj, L. Xiao, G. Gibson, “Disk-
Reduce: RAID for Data-Intensive Scalable Computing,” Proc. of
the Fourth Petascale Data Storage Workshop (PDSW09), 2009.
[Ghemawat03] Ghemawat, S., H. Gobioff, S.-T. Lueng, “Google
File System.” In 19th ACM Symposium on Operating Systems
Principles (SOSP’03).
[Gibson09] Gibson, G., B. Fan, S. Patil, M. Polte, W. Tantisiriroj,
L. Xiao, “Understanding and Maturing the Data-Intensive Scalable
Computing Storage Substrate,” 2009 Microsoft eScience Work-
shop, Pittsburgh, PA, October, 2009.
[Gibson89] Gibson, G. A., Hellerstein, L., Karp, R. M., Katz, R.
H., and Patterson, D. A. Failure correction techniques for large
disk arrays. ACM ASPLOS (1989).
[Grider06] G. Grider. HPC I/O and File System Issues and Per-
spectives. Presentation at ISW4, LA-UR-06-0473, Slides available
at http://www.dtc.umn.edu/disc/isw/presentations/isw46.pdf, 2006.
[Hafner05] Hafner, J.L., “WEAVER Codes: Highly Fault Tolerant
Erasure Codes for Storage Systems.” In USENIX Conference on
File and Storage Technologies (FAST’05), 2005.
[Hadoop] Hadoop. Apache Hadoop Project.
http://hadoop.apache.org/
[Hartman94] Hartman, J., Ousterhout, J. The zebra striped network
file system. In Proc. 14th ACM SOSP, 1994.
[Holland94] Holland, M., G. A. Gibson, D. P. Siewiorek, “Archi-
tectures and Algorithms for On-line Failure Recovery in
Redundant Disk Arrays,” J. of Distributed & Parallel Databases,
2(3), 1994.
[Howard88] Howard, J. H., Kazar, M. L., Menees, S. G., Nichols,
D. A., Satyanarayanan, M., Side- botham, R. N., West, M. J. Scale
and performance in a distributed file system. ACM Trans. Comput.
Syst. 6, 1, 1988.
[Isard07] Isard, M., M. Budiu, Y. Yu, A. Birrell, D. Fetterly.
“Dryad: Distributed Data-Parallel Programs from Sequential
Building Blocks.” In 2007 Eurosys Conference, 2007.
[Koch06] K. Koch. The new roadrunner supercomputer: What,
when, and how. Presentation at SC’06, 2006.
[LANL06] Data is available at:.
http://www.lanl.gov/projects/computerscience/data/, 2006.
[Long94] Long, D., Montague, B. R., Cabrera, L.-F. Swift/raid: A
distributed raid system. ACM Computing Systems, 3, 1994.
[McEvoy81] D. McEvoy. The architecture of tandem’s nonstop
system. In ACM 81: Proceedings of the ACM ’81 conference,
1981.

[Nelson88] Nelson, M., Welch, B., Ousterhout, J. Caching in the
sprite network file system. ACM Transaction on Computer Sys-
tems 6(1), 1988.
[NFSv4.1] IETF. NFSv4.1 specification.
http://tools.ietf.org/wg/nfsv4.
[Ousterhout85] Ousterhout, J., Costa, H. D., Harrison, D., Kunze,
J., Kupfer, M., Thompson, J. A trace-driven analysis of the unix
4.2 bsd file system. In Proc. 10th ACM Symposium on Operating
Systems Principles,1985.
[Patil09] Patil, S., G.A. Gibson, G.R. Ganger, J. Lopez, M. Polte,
W. Tantisiriroj, L. Xiao, “In Search of an API for Scalable File
Systems: Under the Table or Above It?” Workshop on Hot Topics
in Cloud Computing (HotCloud09), San Diego, CA, June 2009.
[Patterson88] D. Patterson, G. Gibson, R. Katz. A case for redun-
dant arrays of inexpensive disks (RAID). In Proc. of the ACM
SIGMOD International Conference on Management of Data, 1988.
[Pinheiro07] Pinheiro, E., Weber, W., Barroso, L. A. Failure trends
in a large disk drive population. In Proc. of the 5th USENIX Conf.
on File and Storage Technologies (FAST07), San Jose, 2007.
[Plank99] Plank, J. S. A tutorial on reed-solomon coding for fault-
tolerance in raid-like systems. Software - Practice & Experience
27(9), 1999.
[Plank08] Plank, J. S., Simmerman, S., Schuman, C. D. Jerasure: A
library in c/c++ facilitating erasure coding for storage applications
- version 1.2. Tech. Rep. UT-CS-08-627, University of Tennessee
Department of Computer Science, August 2008.
[Plank09] Plank, J.S., J. Luo, C.D. Schuman, L. Xu, Z. Wilcox-
O’Hearn. “A performance evaluation and examination of open-
source erasure coding libraries for storage.” In USENIX Confer-
ence on File and Storage Technologies (FAST’09), 2009.
[PVFS2] PVFS2. Parallel Virtual File System, Version 2.
http://www.pvfs2.org/
[Roth06] P. C. Roth. The Path to Petascale at Oak Ridge National
Laboratory. In Petascale Data Storage Workshop Supercomput-
ing’06, 2006.
[Reed60] Reed, I. S., Solomon, G. Polynomial codes over certain
finite fields. In Journal of the Society for Industrial and Applied
Mathematics, 8, 1960.
[Rosenblum91] Rosenblum, M., Ousterhout, J. K. The design and
implementation of a log-structured file system. ACM Transactions
on Computer Systems 10, 1991.
[Ross09] Ross, Sheldon. A First Course in Probability. 8th edition.
Prentice Hall. 2009.
[Savage96] Savage, S., Wilkes, J. Afraid: A frequently redundant
array of independent disks. In Proc. of annual conference on
USENIX Annual Technical Conference, 1996.
[Schroeder06] B. Schroeder G. Gibson. A large-scale study of
failures in high-performance computing systems. In Proc. of the
2006 International Conference on Dependable Systems and Net-
works (DSN’06), 2006.
[Schroeder07a] Schroeder, B., G. Gibson, “Disk failures in the real
world: What does an MTTF of 1,000,000 hours mean to you?”
Proc. of the 5th USENIX Conference on File and Storage Tech-
nologies (FAST’07), 2007.
[Schroeder07b] Schroeder, B., G. A. Gibson, “Understanding Fail-
ures in Petascale Computers,” Journal of Physics: Conference
Series, 78, (SciDAC07), 2007.
[Tantisiriroj08] Tantisiriroj, W., S. V. Patil, G. Gibson. “Data in-
tensive file systems for internet services: A rose by any other

11

name…” Tech. Report CMU-PDL-08-114, Carnegie Mellon
University, Oct. 2008.
[Top500] Top 500 supercomputing sites. http://www.top500.org,
2007.
[Weatherspoon02] Weatherspoon, H., Kubiatowicz, J. Erasure
coding vs. replication: A quantitative comparison. In Proc. of
IPTPS, 2002.
[Welch08] Welch, B., M. Unangst, Z. Abbasi, G. Gibson, B. Muel-
ler, J. Small, J. Zelenka, B. Zhou. “Scalable Performance of the
Panasas Parallel File System. In USENIX Conference on File and
Storage Technologies (FAST’08), 2008.
[Wilkes96] Wilkes, J., Golding, R., Staelin, C., Sullivan, T. The hp
autoraid hierarchical storage system. ACM Trans. Comput. Syst.
14(1), 1996.

