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1 Abstract 
Large data is increasingly important to large-scale computa-
tion and data analysis. Storage systems with petabytes of 
disk capacity are not uncommon in high-performance com-
puting and internet services today and are expected to grow 
at 40-100% per year. These sizes and rates of growth render 
traditional, single-failure-tolerant (RAID 5) hardware con-
trollers increasingly inappropriate. Stronger protection 
codes and parallel reconstruction based on parity decluster-
ing are techniques being employed to cope with weakening 
data reliability in these large-scale storage systems. The first 
tolerates more concurrent failures without data loss at the 
cost of increasing redundancy overhead.  The second paral-
lelizes failure recovery from the traditional per-subsystem 
hardware RAID reconstruction to parallel and distributed 
reconstruction over all disks and RAID controllers. This 
paper explores the differences and similarities between 
large-scale storage systems in high-performance computing 
(HPC) and data-intensive scalable computing (DISC) for 
internet services, and revises reliability models for these 
storage systems to incorporate stronger redundant encoding 
and the use of parallel reconstruction. A modern example, 
for systems of 1-5 petabytes, suggests that triplication can 
have as much as 10 times lower rates of lost data per year, 
even when its number of components has to be almost 3 
times more for the same amount of user data, but that this 
difference may be as small as 1 to 10 bytes lost per year.  
Many might decide that this factor of ten is not significant 
in light of other sources of information loss. 

2 The Problem: Huge Collections of Disks 
With petascale computers now in use there is a pressing 
need to anticipate and compensate for a probable increase 
in failure and application interruption rates and in degrading 
performance caused by online failure recovery. Researchers, 
designers and integrators have generally had too little de-
tailed information available on the failures and interruptions 
that even smaller terascale computers experience. The in-
formation that is available suggests that failure recovery 
will become far more common in the coming decade, and 
that the condition of recovering online from a storage device 
failure may become so common as to change the way we 
design and measure system performance.  
In our prior work in the DOE Petascale Data Storage Insti-
tute (www.pdsi-scidac.org), we collected and analyzed a 
number of large data sets on failures in high-performance 
computing (HPC) systems [Schroeder06]. The primary data 
set we obtained was collected during 1995–2005 at Los 
Alamos National Laboratory (LANL) and covers 22 high-
performance computing systems, including a total of 4,750 

machines and 24,101 processors. These data cover node 
outages in HPC clusters, as well as failures in storage sys-
tems. To the best of our knowledge, this is the largest failure 
data set studied in the literature to date, both in terms of the 
time-period it spans, and the number of systems and proces-
sors it covers, and the first to be publicly available to 
researchers (see [LANL06] for access to the raw data). Us-
ing these data sets and large scale trends and assumptions 
commonly applied to future computing systems design, we 
projected onto the potential machines of the next decade our 
expectations for failure rates, mean time to application inter-
ruption, and the consequential application utilization of the 
full machine, based on checkpoint/restart fault tolerance and 
the balanced system design method of matching storage 
bandwidth and memory size to aggregate computing power 
[Grider06]. Not surprisingly, if the growth in aggregate 
computing power continues to outstrip the growth in per-
chip computing power, more and more of the computer’s 
resources may be spent on conventional fault recovery 
methods. We envisioned highly parallel simulation applica-
tions being denied as much as half of the system’s resources 
in five years, for example, and recommended new research 
on application fault tolerance schemes for these applications 
– process pairs [McEvoy81] mirroring of all computation is 
such a scheme that would halt the degradation in utilization 
at 50% [Schroeder07b].  
The leading short-term alternative – adding a new tier of 
memory that is less expensive than DRAM, probably based 
on NAND flash, to buffer checkpoints allows the copying 
from checkpoint memory to disk to take longer because the 
average rate of writing checkpoints is much lower than the 
instantaneous rate that primary memory is dumped to 
checkpoint memory.  This is a one-time improvement, as the 
disk system bandwidth still has to improve at the rate of the 
time average checkpoint capture, unless checkpoint memory 
can be large enough that no checkpoint is retained for long.  
Eliminating disk from the checkpoint solution is made 
harder by two issues: 1) memory, primary and checkpoint, 
are a large fraction of total system cost, and 2) simulation 
visualization and data analysis, today mostly piggy-backed 
on checkpoints, may independently mandate periodic simu-
lation state capture to disk for later, offline processing.  It is 
unlikely that large scale HPC computer design will soon 
abandon its expectation that disk storage bandwidth track 
overall computational performance. 
Our interest in large-scale cluster node failure originated in 
the key role of high bandwidth storage in checkpoint/restart 
strategies for application fault tolerance [Elnozahy02]. Al-
though storage failures are often masked from interrupting 
applications by RAID technology [Patterson88], recon-
structing a failed disk can impact storage performance 
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noticeably [Holland94] and, if too many failures occur, stor-
age system recovery tools can take days to bring a large file 
system back online, perhaps without all of its user’s original 
data. Moreover, disks have traditionally been viewed as 
perhaps the least reliable hardware component, due to the 
mechanical aspects of a disk. We have been able to obtain 
datasets describing disk drive failures occurring at HPC 
sites and at a large internet service provider. The data sets 
vary in duration from 1 month to 5 years and cover a total of 
more than 100,000 hard drives from four different vendors, 
and include SCSI, fibre-channel and SATA disk drives. For 
more detailed results see [Schroeder07a]. 
For modern drives, the datasheet MTTFs are typically in the 
range of 1-1.5 million hours, suggesting an annual failure 
and replacement rate (ARR) between 0.58% and 0.88%. In 
the data, however, field experience with disk replacements 
differs from datasheet specifications of disk reliability. Fig-
ure 1 shows the annual failure rate suggested by the 
datasheets (horizontal solid and dashed line), the observed 
ARRs for each of the datasets and the weighted average 
ARR for all disks less than five years old (dotted line).  Fig-
ure 1 shows a significant discrepancy between the observed 
ARR and the datasheet AFR for all datasets. While the data-
sheet AFRs are between 0.58% and 0.88, observed ARRs 
vary from 0.5% to as high as 13.5%. That is, the observed 
ARRs are by up to a factor of 15 higher than datasheet 
AFRs. The average ARR over all datasets (weighted by the 
number of drives in each data set) is 3.01%. Even after 
removing all COM3 data, which exhibits the highest ARRs, 
the average ARR was still 2.86%, 3.3 times higher than 
0.88%, the higher of the often quoted AFR range. 
With this cluster and disk failure data we developed various 
projections.  Some of these projections are not relevant for 
this proposal, but the implications on disk drive failure re-
covery are central.    
First, our projections expect integrators to deliver petascale 
computers according to the long-standing trends shown on 
top500.org [top500]; that is, the aggregate compute per-
formance doubles every year.  Second, our projections 
assume that integrators will continue to build balanced sys-
tems; that is, storage size and bandwidth will scale linearly 
with memory size and total compute power [Grider06]. As a 

baseline for our projections, we model the Jaguar system at 
Oak Ridge National Laboratory (ORNL) after it is ex-
panded to a Petaflop system in 2008. Jaguar then had 
around 11,000 processor sockets (dual-core Opterons), 45 
TB of main memory and a storage bandwidth of 55 GB/s 
[Roth06]. While the architecture of other 2008 petascale 
machines, such as LANL’s Roadrunner [Koch06], differs 
from Jaguar in its use of hybrid nodes employing vec-
tor/graphics co-processors, our predictions for its failure 
rates are little different from Jaguar, so we do not include 
separate lines for it on our graphs.  
First, individual disk bandwidth grows at a rate of about 
20% per year, which is significantly slower than the 100% 
per year growth rate that top500.org predicts for total proc-
essing power. To keep up, the number of disk drives in a 
system will have to increase at an impressive rate. Figure 2 
projects the number of drives in a system necessary to (just) 
maintain balance. The figure shows that, if current technol-
ogy trends continue, by 2018 a computing system at the top 
of top500.org chart will need to have more than 800,000 
disk drives. Managing this number of independent disk 
drives, much less delivering all of their bandwidth to an 
application, will be extremely challenging for storage sys-
tem designers.  
Second, disk drive capacity will keep growing by about 
50% per year, thereby continuously increasing the amount 
of work needed to reconstruct a failed drive, and the time 
needed to complete this reconstruction when a single RAID 
controller does all of the work of each failed disk recon-
struction. While other trends, such as decrease in physical 
size (diameter) of drives, will help to limit the increase in 
reconstruction time, these are single step decreases limited 
by the poorer cost effectiveness of the smaller disks. Overall 
we think it is realistic to expect an increase in reconstruction 
time of at least 10% per year using the current hardware 
RAID controller model. Assuming that reconstruction time 
was about 30 hours and that 3% of drives in a system fail 
per year on average (as shown in Figure 1), we projected the 
number of concurrent reconstructions going on in future 
HPC systems, as shown in Figure 3. The figure indicates 
that in the year 2018, on average, nearly 300 concurrent 
reconstructions will be in progress at any time.  

 
Figure 1: Comparison of data sheet annual failure rates 
(horizontal dotted lines) and the observed annual re-
placement rates of disks in the field. 

 
Figure 2 (left) and 3 (right). (2) Number of disk drives in 
the largest of future systems. (3) Number of concurrent 
reconstructions in the largest of future systems. 
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The operating model for HPC storage calls for it to fully 
mask internal errors – HPC fault tolerance requires storage 
to survive all failures, and to absorb and return checkpoints 
at full speed at all times. While in practice this does not re-
quire enterprise-class availability, five minutes of downtime 
per year or less, it does means that hundreds of concurrent 
recoveries at all times must be managed with essentially no 
degradation in availability and performance.  Yet each re-
covery typically processes tens of terabytes, and the 
minimum time needed to simply read (or write) an entire 
disk is typically multiple hours, given 100% of the disk’s 
resources.  Even a single RAID controller dramatically 
slowed down by a reconstruction is likely to slow down the 
entire storage system by the same dramatic reduction be-
cause highly parallel, highly striped data access uses all 
storage devices evenly. 
It seems quite clear that petascale storage systems designers 
will be spending a large fraction of their efforts on fault 
tolerance inside the storage systems on which petascale ap-
plication fault tolerance depends. 
3 Parallel Reconstruction 
There are two principle techniques for addressing pressing 
concerns of ever larger numbers of disks in the storage sys-
tem: (1) redundant data encodings tolerant of more failures 
[Plank09], and (2) acceleration of the failed disk reconstruc-
tion process. The former is taking place, as many large 
storage installations are using double-failure-tolerant RAID 
6 and some vendors have begun to recognize that reliability 
is improved when more sets of N concurrent failures are 
recoverable even if every set of N concurrent failures are 
not recoverable [Hafner05]. 
Greater levels of concurrent failure tolerance by itself do 
nothing to address the duration of a reconstruction, and 
therefore the time-averaged number of concurrent recon-
structions.  Instead, one might reasonably expect that higher 
levels of failure tolerance will require more complex codes, 
slowing down reconstruction. Moreover, each RAID sub-
system, typically containing one or more sets of 8 to 16 
disks in a single RAID group, independently detects and 
recovers from disk failures, so failure recovery and per-
formance degradation during failure recovery is not load 
balanced. 
Parity declustering is a technique for distributing RAID 

groups evenly over all RAID controllers [Holland94]. Fig-
ure 4 shows an example parity declustering organization. 
Provided that replacement disk space and RAID controller 
functionality are also distributed, disk failure reconstruction 
is parallelized and reconstruction can be done much faster in 
large systems and evenly load balanced.  
Parallel reconstruction, enabled by parity declustering, pro-
vides a powerful tool for coping with the predicted hundreds 
of concurrent reconstructions in large systems. Parallel re-
construction causes reconstruction speed to scale up in 
proportion to the size of the storage system. Implemented in 
the Panasas PanFS storage system, Figure 5 shows how re-
construction speed increases linearly with large storage 
systems. Because parity groups are evenly distributed over 
all disks, each block lost on a failed disk is equally likely to 
be associated with every other disk by parity group, and 
provided many parity groups are reconstructed in parallel, 
all disks contribute to the reconstruction effort equally. 
With parallel reconstruction, reconstructions can be done 
faster in large clusters, yielding much less overlapping of 
reconstructions.  Even more powerfully, this technique 
scales with system size, so its utility becomes more compel-
ling as systems get larger.  
However, data reliability is impacted by parity declustering 
in two countering ways.  While shorter reconstructions re-
duces the window of time that future disk failures may 
render current reconstructions unable to recover data, dis-
tributing parity groups exposes potential data loss to more 
combinations of disk failures. That is, if the parity groups of 
a double-failure-tolerant storage system are declustered, 
then each time three disks are concurrently failed, there is a 
good chance that some parity group included all three of 
these disks, while in a traditional multiple RAID 6 storage 
system, if at least two of the failed disks are in different 
RAID 6 arrays, there is no chance that data is not protected 
by RAID.  
Early work on parity declustering found that these two fac-
tors – smaller time windows of vulnerability to additional 
failures and larger sets of disks entwined in the same parity 

 
Figure 4. An example of parity declustering. Parity groups 
of four components, each designated by a single letter la-
bel, are spread over eight disks evenly. 

 
Figure 5: The speed that lost data can be recon-
structed, in megabytes per second, as a function of 
the number of shelves (20 disks and a controller in 
each) in a PanFS storage system employing parity de-
clustering and parallel reconstruction. 
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groups – cancelled each other, causing data reliability to be 
neither hurt nor improved by parity declustering [Hol-
land94].  
Parity declustering and parallel reconstruction, coupled with 
more powerful redundant encodings, are the principle tools 
for making ever-larger storage systems reliable and perfor-
mant. 

While parallel file systems used in HPC clusters and 
supercomputers was the starting point for this research, we 
are concerned with all large-scale storage systems.  In par-
ticular, Data-Intensive Scalable Computing (DISC) systems 
such as used by internet services clusters are of comparable 
scale and performance to HPC systems. Figure 6 compares 
the system architecture of most HPC systems (a) to DISC 
systems (b).  
Most DISC applications are characterized by parallel proc-
essing of massive datasets stored in the underlying shared 
storage system. Such distributed programming abstractions 
are provided by purpose-built frameworks like MapReduce 
[Dean04], Hadoop [Hadoop] and Dryad [Isard07]. These 
frameworks divide a large computation into many tasks that 

are assigned to run on nodes that store the desired input 
data, and avoiding a potential bottleneck resulting from 
shipping around terabytes of input data. Hadoop, and its  
data intensive file system HDFS [Borthakur09a], are open-
source implementations of Google’s MapReduce and Goo-
gleFS [Ghemawat03]. Our exploration of DISC systems is 
based on Hadoop’s use of the HDFS data intensive file sys-
tem. 

4.1 Parallel versus Data Intensive File Systems 
At a high level HDFS’s architecture resembles an HPC par-
allel file system. HDFS stores file data and metadata on two 
different types of servers. All files are divided into chunks 
that are stored on different data servers. The file system 
metadata, including the per-file chunk layout, is stored on 
the metadata server(s). For single writer workloads, HDFS 
differs from HPC parallel file systems primarily in its layout 
and fault tolerance schemes. 
HDFS assigns chunks to compute nodes at random, while 
HPC file systems use a round robin layout over dedicated 
storage servers, and HDFS exposes a file’s layout informa-
tion to Hadoop. This exposed layout allows the Hadoop’s 
job scheduler to allocate tasks to nodes in a manner that (1) 
co-locates compute with data where possible, and (2) load 
balances the work of accessing and processing data across 
all the nodes. Thus, the scheduler can mask sub-optimal file 
layout resulting from HDFS’s random chunk placement 
policy with lots of work at each node [Tantisiriroj08]. The 
second big difference between HDFS and HPC file systems 
is its fault tolerance scheme: it uses triplication instead of 
RAID. We address this difference in the next section. 
Given the growing importance of the Hadoop MapReduce 
compute model, we ask, “Could we use a mature HPC par-
allel file system in-place of a custom-built DISC file system 
like HDFS?” While most HPC file systems use separate 
compute and storage systems for flexibility and manageabil-
ity, most HPC parallel file systems can also be run with data 
servers on each compute node.  
We built a non-intrusive shim layer to plug a real-world 
parallel file system (the Parallel Virtual File System, PVFS 
[PVFS2]), into the Hadoop framework storing data on com-
pute nodes [Tantisiriroj08]. This shim layer queries file 
layout information from the underlying parallel file system 
and exposes it to the Hadoop layer. The shim also emulates 
HDFS-style triplication by writing, on behalf of the client, 
to three data servers with every application write.  

4 Data Intensive Storage Systems 

 

(a)

 
(b) 

Figure 6: HPC and DISC storage models. Most HPC 
storage (a) separates data servers (DS) from compute 
servers in dedicated subsystems, each internally pro-
tected by RAID controllers. DISC systems (b), however, 
often fold storage back into the application servers. Both 
systems separate metadata servers (MDS). 

 
Figure 7: By exposing the file layout mapping through 
a non-intrusive shim layer, a production parallel file 
system (PVFS) can match the performance of HDFS on 
a widely used Hadoop-style workload. 
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Figure 8 shows that for a typical Hadoop application (grep 
running on 32 nodes), the performance of shim-enabled 
Hadoop-on-PVFS is comparable to that of Hadoop-on-
HDFS. By simply exposing a file’s layout information, 
PVFS enables the Hadoop application to run twice as fast as 
it would without exposing the file’s layout. 
Most parallel large-scale file systems, like PVFS, already 
expose the file layout information to client modules but do 
not make it available to client applications. For example, the 
new version 4.1 of NFS (pNFS) delegates file layout to cli-
ent modules to allow the client OS to make direct access to 
striped files [NFSv4.1]. If these layout delegations were 
exposed to client applications to use in work scheduling 
decisions, as done in Hadoop or MapReduce, HPC and 
pNFS file systems could be significantly more effective in 
DISC system usage. 

4.2 Replication versus RAID in DISC Systems 
To tolerate frequent failures, each data block in a data inten-
sive file system is typically triplicated and therefore capable 
of recovering from two simultaneous node failures. Though 
simple, a triplication policy comes with a high overhead 
cost in terms of disk space: 200%. Traditional RAID sys-
tems typically exhibit capacity overheads between 10% and 
25% -- about 10 times smaller! We have built DiskReduce, 
an experimental application of RAID in HDFS to save stor-
age capacity.  
In HDFS, files are divided into blocks, typically 64 MB, 
each stored on a data node. Each data node manages all file 
data stored on its persistent storage. It handles read and 
write requests from clients and performs “make replica” 
requests from the metadata node. There is a background 
process in HDFS that periodically checks a missing blocks 
and, if found, assigns a data node to replicate the block hav-
ing too few copies. 
DiskReduce exploits HDFS’s background re-replication to 
replace copies with lower overhead RAID encoding. In a 
manner reminiscent of early compressing file systems 
[Cate91], all blocks are initially triplicated; that is, uncom-

pressed. Where the background process looks for 
insufficient number of copies in HDFS, DiskReduce instead 
looks for blocks not encoded, and replaces copies with en-
codings. Because it is inherently asynchronous, DiskReduce 
can further delay encoding when space allows, to allow ac-
cesses temporally local to the creation of the data choice 
among multiple copies for readback. 
We have prototyped DiskReduce as a modification to 
Hadoop Distributed File System (HDFS) version 0.20.0. 
Currently, the DiskReduce prototype supports only two en-
coding schemes [Plank08]: “RAID 6” and “RAID 5 and 
Mirror”, in which a RAID5 encoding is augmented with a 
second complete copy of the data. 
Our prototype runs in a cluster of 63 nodes, each containing 
two quad-core 2.83GHz Xeon processor, 16 GB of memory, 
and four 7200 rpm SATA 1 TB Seagate Barracuda ES.2 
disks with 32MB buffer. Nodes are interconnected by 10 
Gigabit Ethernet. All nodes run the Linux 2.6.28.10 kernel 
and use the ext3 file system for storing HDFS blocks. 
To get a feel for its basic encoding functionality in our pro-
totype, we set up a 32 node partition and had each node 
write a 16 GB file into a DiskReduce-modified HDFS 
spread over the same 32 nodes using RAID groups of eight 
data blocks each.  
Figure 9 shows the storage usage and encoding bandwidth 
consumed for the encoding of this 512GB of data. While 
this experiment is simple, it shows the encoding process 
removing 400GB and 900GB for the RAID 5 and mirror 
and RAID 6 schemes, respectively, bringing overhead down 
from 200% to 113% and 25%, respectively. 
Based on a talk about our previous DiskReduce work, a 
userspace RAID 5 and mirror encoding scheme has been 
implemented on top of HDFS by HDFS developers 
[Borthakur09b]. We are working closely with Hadoop and 
HDFS developers to further explore RAID 6 encodings, 
delaying of encoding to enable reading soon after write the 
full benefit of multiple copies, and to quantify this benefit, 
and delaying of deletion to trade capacity against the encod-
ing cleanup of a partial RAID set delete.  
Similarly HPC parallel file systems have begun to imple-

 
                  (a) Triplication             (b) RAID 5 and Mirror 

 
(c)  RAID 6 

Figure 8: Codewords protecting user data against any 
double node failure in DISC storage systems using 
DiskReduce. 

 
Figure 9: Storage capacity utilized and rate capacity is 
recovered by Disk Reduce background encoding. 
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ment RAID over nodes, instead of just RAID in hardware, 
led by a spin off of our prior work in scalable file systems 
[Welch08]. In our long-term vision for data intensive stor-
age systems we see a convergence of the semantic power of 
HPC parallel file systems with the high degrees of node 
failure tolerance in data intensive file systems. 

5 Reliability Modeling 
The reliability models built for RAID are based on non-
declustered storage.  The original model [Patterson88] 
changed little when RAID 6 was commercialized [Cor-
bett04], although a higher rate of secondary failures was 
added as a “correlation” factor on the disk failure rate.  
Moreover, both the original and revised models retain the 
simple notion that reliability should be measured as the time 
until any data is lost, because loss of any data is cata-
strophic, and differentiation of the amount lost is not 
pertinent. Mean time until disk failure, the inverse of annual 
failure rate, is measured in decades to centuries, and mean 
time until data loss in RAIDs is orders of magnitude larger.  
Yet there is no direct utility to a model of centuries until 
data loss because computing devices are rarely operated 
more than a decade, and few have warrantees for more than 
five years. 
The most useful interpretation of mean time until data loss 
assumes data loss events have a Poisson distribution, so the 
probability of data loss in a short time period (days or weeks 
in practice) is proportional to the reciprocal of mean time 
until data loss.  In this sense doubling the mean time until 
data loss halves the probability of data loss in a short time 
period. 
Yet even these simplistic models are rarely used in practice. 
The most practiced model for reliability is the maximum 
number of concurrent failures of any disks that is always 
recoverable based on the redundant encoding.  In this sense 
the metric in practice is: any single disk failure loses data, 
all single disk failures are tolerated, all double disk failures 
are tolerated, and, in the future, all triple disk failures are 
tolerated.  With this weak model, the 200% overhead (three 
copies) triplicated storage of DISC systems has equivalent 
failure protection to the 25% overhead (with groups of eight 
disks) RAID 6 storage in HPC systems. Of course, no one 
expects this to be true, and the traditional models for RAID 
reinforce this expectation [Patterson88, Corbett04]. 
In this work we improve traditional models for redundant 
disk storage reliability in two ways: the inclusion in the 
model of parity declustering and expanded metrics for the 
amount of data lost annually rather than simply the expected 
number of loss events. 

5.1  Large Scale Storage Failure Model 
In this work we focus on catastrophic failure of magnetic 
disks.  This is not the only failure such disks experience.  
For example, unrecoverable read errors, or latent sector er-
rors are non-catastrophic failures in which a small amount 
of data on the disk is not readable, although rewriting the 
storage region may be subsequently readable 
[Bairavasundaram07]. Although such failures are sometimes 

repaired by RAID reconstruction, they are also minimized 
by scrubbing for them in the background, by selecting disk 
products with stronger per-sector codes and by multiple 
sector protection codes inside each disk [Dholakia06].   
When RAID reconstruction is used to recover from latent 
sector errors there is one important special case: each latent 
sector error experienced during the reconstruction of the 
maximum tolerable disk failures causes a parity stripe to be 
unrecoverable.  In traditional RAID systems the loss of a 
single parity stripe causes the enclosing volume to be un-
available until manual repair can be invoked.  This failure 
mode is often quoted as the driving reason for the introduc-
tion into enterprise storage systems of double failure 
tolerating codes, RAID 6 [Corbett04].  
Alternatively, many of the declustered parity and replicated 
storage solutions can suffer the loss of a single file without 
taking the enclosing volume being taken offline. In these 
systems latent sector errors are another source of small peri-
odic data loses.  In the following model, these sources of 
data loss have not yet been incorporated. The model is also 
not designed to model failover of an entire data center to a 
backup data center, as is done in business continuity solu-
tions and alternative internet service centers. Our models are 
intended to be used to contribute to decisions about when to 
invoke these much more expensive replication solutions. 
Disk failures, disk repairs, data loss events are often sim-
plistically modeled as Poisson events, with exponential 
interarrival times [Patterson88, Corbett04].  Although it is 
demonstrable that these events fail statistical tests for having 
a Poisson distribution [Schroeder07a, Pinheiro07], we seek 
generalized models of fundamental differences, and do not 
want to overwhelm the interpretation of these fundamental 
differences with a level of detailed modeling that is both 
product specific and likely to impart a contribution smaller 
than the inherent errors introduced by unmodeled factors 
such as human error, for example.  We follow the example 
of a higher rate of Poisson disk failures after a first failure in 
a run used in the models given when RAID 6 products were 
introduced [Corbett04]. 
We employ a renewal reward stochastic Markov model to 
compare triplication and RAID 6 reliability in large storage 
systems.  
The model parameters (rates are per hour) are: 

 
Figure 10: Basic model of disk failures and repair 
completions, modeled as Poisson processes. On each 
failure there is a probability of data loss, which 
accumulates into the overall expectation of the rate of 
data loss. 
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N = total number of disks 
d = total number of data blocks stored in each disk  
G = number of unreplicated data blocks in a group 
(not including blocks with computed “check” codes)  
D = total number of non-redundant user data blocks 
μ = (Poisson) repair rate during a single failure repair 
λ = (Poisson) failure rate for a single disk 
c = correlation of disk failures; after the 1st in a run of 
failures, each disk experiences a failure rate is cλ. 

In the zeroeth state the total rate of new disk failures is Nλ 
and there is no chance of data loss.  In all other states each 
disk failure rate is elevated by correlated failure events.  
Since we are modeling very large systems the failure rates 
in non-zero states is approximately cNλ. 
Repair, the process of reconstructing the data lost when a 
disk fails, starts with a detection and diagnosis phase.  Quite 
often storage nodes can be non-responsive for non-trivial 
amounts of time; for example, rebooting a node can easily 
be a multiple minute operation.  Systems overly eager to 
reconstruct an unavailable disk can induce large amounts of 
unnecessary work, since unavailable nodes often return to 
service.  For this reason, practical repair rates need to take 
into consideration a lower bound on repair time based such 
detection and diagnosis phases.  Anecdotal evidence sug-
gests this lower bound is multiple minutes, and perhaps as 
large as a large fraction of an hour. 
Once reconstruction is started, it could proceed as fast as the 
time it takes the entire system to read the amount of data 
equivalent to the size of G disks, dG blocks, spread evenly 
over all disks (G is 1 for replication schemes).  Many instal-
lations will want this to be throttled to consume a small 
fraction of the bandwidth of each disk, so that user work-
load (such as taking checkpoints) will not be significantly 
degraded. Assuming that this throttling limits the total 
bandwidth used for reconstruction, the repair rate, μ, will be 
the same from all states. However, with triplication only one 
block has to be read to reconstruct each failed block but 
with RAID 6 each failed block is reconstructed as a function 
of G surviving blocks, so RAID 6 has G times as much 
reading work to do, and a correspondingly slower repair rate 
(when throttled to a bandwidth limit). 
Triplication and RAID 6, our canonical comparison, yield 
different amounts of user data from the same number of 
disks, because of their different encodings.  Triplication 
schemes provide D = dN/3 user data blocks, since two 
blocks of every triple contain identical copies and cannot 
freely vary; while RAID 6 schemes provide D = dNG/(G+2) 
user data blocks, since 2 of every G+2 blocks in a group are 
do not contain freely variable user data. 
The expected amount of data lost in each failure event ac-
cumulates to the expected data loss rate for the model. With 
double failure tolerant codes like triplication and RAID 6, 
no data loss is possible in states 0 and 1, but once in states 2 
or larger, each new disk failure may lead to an unreconstruc-
table block because that group of blocks may suddenly have 
three lost blocks, while the code can only reconstruct the 
lost data of up to two lost blocks. 

With a triplication encoding, in state i (that is, there are i 
concurrent disks being reconstructed), when another disk 
fails each of its d blocks is independently put at risk based 
on the location of its two replicas. There are (N-1) choose 2 
combinations of these two replicas, all equally likely, and i 
choose 2 of these combinations will yield data loss.  So for 
triplication, the model “reward”, the expected number of 
blocks lost, is (Equation 1): 

For the RAID 6 encoding the calculation is more complex.  
For each block on the newly failed disk, we condition on the 
state of the other G+1 blocks in its group.  If zero or only 
one of these blocks is also failed, no data is lost.   
If the newly failed block is the third failed block in the 
group, then these three blocks are newly unreconstructable, 
and with probability G/(G+2) each of these contains user 
data. Given a specific newly failed block, there are N-1 
choose (G+2-1) other blocks in the group. Of these we want 
two other failed and G-1 not failed, so we want the product 
of i choose 2 ways to pick the failed blocks and N-i-1 
choose G-1 ways to select the non failed blocks from the 
possible non-failed disks. 
For each case were the newly failed block is part of a group 
that has already lost data, that is, suffered three loses al-
ready, the amount additionally lost by this newly failed 
block is 1, prorated by the odds this is a data block, 
G/(G+2).  These cases correspond to j = 3 through i pre-
existing failed blocks with probabilities i choose j times N-i-
1 choose G+2-j over N-1 choose G+1, using the same 
counting argument as above. Combining these counting 
arguments, for RAID 6, the expected number of blocks is 
(Equation 2): 

5.2 Numeric Examples 
Our model was coded into Mathematica and run through a 
few interesting cases.  
Consider storage systems of one to five petabytes of user 
data (D) built from 2 terabyte disks, capable of sustaining 
50 MB/second each, where each disk and the entire system 
80% utilized.  For illumination of reliability in DISC storage 
systems in particular, as with DiskReduce we have software 
for triplication and RAID 6, we use disk blocks of 64 mega-
bytes, typical in DISC storage such as HDFS. Parameter d is 
determined as 2 TB / 64 MB * 80%. 
Disk failure rates are set by our prior work to 2% failing per 
year and repair rates are set to 10% of a peak rate deter-
mined by the amount to be read divided by the number of 
disks, each providing 50 MB/second. We have not yet ex-
plored failure correlations other than c=1. 
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RAID 6 groups contain eight data blocks and two check 
blocks. 
Figure 11 shows this comparison when it takes about an 
hour for the storage system to decide to initiate reconstruc-
tion. The primary implication in Figure 11 is the relatively 
low rate of data loss in all cases: less than 10 bytes per year.  
This is easily tolerable, and suggests that real world causes 
of data loss are probably beyond the scope of this model, or 
that the reliability difference between RAID 6 and triplica-
tion is unlikely to matter in practice. 
The secondary implication in Figure 11 is the different im-
plications of increasing total data size. Because the amount 
of user data is held constant, there are almost three times 
more disks in a system using triplication than one using 
RAID 6.  This means that overall disk failure rates grow 
three times faster in triplication, yet repair rates in both are 
linear in the number of disks, and as the systems get larger 
repair is increasingly dominated by the detection and diag-
nosis phase of repair.  
It is probably not a surprise to see that RAID 6 annual data 
loss rates in small systems are much larger than in systems 
using triplication, perhaps because of the benefit as the sys-
tem gets larger of fewer and fewer data loss cases as 
percentage of total cases is larger with the initially higher 
loss rates of RAID 6. 

6 Related Work 
Almost all enterprise and high performance computing stor-
age systems protect data against disk failures using a variant 
of the erasure protecting scheme known as RAID [Patter-
son88]. Presented originally as a single disk failure tolerant 
scheme, RAID was soon enhanced by various double disk 
failure tolerance encodings, collectively known as RAID 6, 
including two-dimensional parity [Gibson89], P+Q Reed 
Solomon codes [Reed60, Chen94], XOR-based EvenOdd 
[Blaum95], and NetApp’s variant Row-Diagonal Parity 
[Corbett04]. Lately research is turned to greater reliability 

through codes that protect more, but not all, sets of larger 
than two disk failures [Hafner05], and the careful evaluation 
of the tradeoffs between codes and their implementations 
[Plank09]. 
Networked RAID has also been explored, initially as a 
block storage scheme [Long94], then later for symmetric 
multi-server logs [Hartman94], Redundant Arrays of Inde-
pendent Nodes [Bohossian01], peer-to-peer file systems 
[Weatherspoon32] and is in use today in the PanFS 
supercomputer storage clusters [Welch08]. DiskReduce 
explores similar techniques, specialized to the characteris-
tics of large-scale data-intensive distributed file systems. 
File caching has been widely used in distributed systems to 
improve performance [Howard88, Nelson88]. A cache rep-
resentation of data on disk is often applied to balance 
performance requirement and storage limit given temporal 
locality in data access. The file system in [Cate91] combines 
file caching and compression in a two-level: one sector of 
the disk holds uncompressed data which can be accessed at 
normal disk speed and a sector holds compressed data which 
needs to be uncompressed before access. The least recently 
used files are automatically compressed. AutoRAID 
[Wilkes96] proposes a two-level storage hierarchy imple-
mented in RAID controllers. Active data is kept in one level 
mirrored (with two copies) to improve reading bandwidth 
(e.g. read data from the copy closer, or read half of the data 
from each copy); while inactive data is stored in the lower 
level with RAID 5 protection. Migration of data between 
two levels is performed in the background based on the 
least-recently-written data dynamically determined. Disk-
Reduce also introduces a two-layer representation: data in 
triplication and RAID-6 encoded. 
In this work, design choices are made based on statistics 
(e.g. file size distribution, file access pattern) collected from 
clusters for cloud computing. As a comparison, the file size 
distribution in supercomputing file systems are reported in 
[Dayal08]. The access pattern and deletion pattern of UNIX 
BSD 4.2 file system is reported by a trace study in mid 80s 
[Ousterhout85]: most of the file accessed are open only a 
short time and accessed sequentially; most new information 
is deleted or overwritten within a few minutes of its crea-
tion. 
Previous works address how to reduce the cost of maintain-
ing RAID consistency (e.g. parity), without compromising 
data reliability. AFRAID [Savage96] always applies data 
update in real time but shifting parity update to idle cycles 
and therefore eliminates the small- update penalty by hiding 
the cost, with slight loss of data availability. Paritypoint 
[Cormen93] claims it is important for parallel file systems 
being able to turn off parity on a per-file basis so that appli-
cations can disable parity update for temporary files and 
increase I/O independence. Data is immutable in Disk-
Reduce so RAID set is only updated after deletion. The 
check blocks are updated asynchronously like AFRAID, but 
deleted blocks are marked in real time. Therefore the consis-
tency is always guaranteed. 

 
Figure 11: Annual data loss rate, in bytes, as a function 
of the total amount of user data, in gigabytes, for triplica-
tion and RAID 6. Repair bandwidth is limited to 10% of 
peak repair bandwidth and the minimum repair time is 1 
hour, including failure detection and diagnosis time. 
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In DiskReduce after deleting blocks in a RAID set, the 
space has to be reclaimed by garbage collection. This is 
similar to Log-structured file systems [Rosenblum91] where 
different heuristics are studied to gather the freed segments 
into clean segments with small overhead [Blackwell95]. 
Finally, our basic approach of adding erasure coding to 
data-intensive distributed file systems has been introduced 
into the Google File System [Presotto08] and, as a result of 
an early version of this work, into the Hadoop Distributed 
File System [Borthakur09a]. This paper studies the advan-
tages of deferring the act of encoding. 

7 Conclusions and Future Work 
Large scale storage systems in high performance computing 
(HPC) and data intensive scalable computing (DISC) for 
internet services are too large and too heavily utilized to rely 
on hardware RAID 5 in each subsystem for data reliability.  
Redundancy codes need to protect against at least all double 
disk failures, and reconstruction of each failed disk needs to 
be parallelized to exploit all the storage and RAID controller 
capabilities of the entire storage system.  Other differences 
between parallel file systems for HPC and data intensive file 
systems for internet service are superficial and in the proc-
ess of being minimized.  Notably, the storage substrate for 
MapReduce (HDFS in Hadoop) can be replaced with a HPC 
parallel file system (PVFS) and performance for DISC ap-
plications is not reduced. And RAID 5 and RAID 6 
redundancy encoding can be added to HDFS. 
In order to better understand the implications of stronger 
failure protection codes and parallel reconstruction on stor-
age reliability, we have developed a simple model for the 
annual rate of data loss and applied it to triplicated and 
RAID 6 storage systems.  We advocate annual rate of data 
loss instead of mean time until data loss because it is di-
rectly measurable, it differentiates between codes that lose 
data in smaller amounts rather than just less often, and be-
cause it draws attention to rates of data loss that are 
endurable rather than treating any loss as too expensive to 
endure. 
In an example analysis of storage systems with a few 
petabytes of user data using 2 terabyte disks, DISC-style 64 
MB blocks, RAID 6 groups of 8 data blocks and 2 check 
blocks, disks with annual failure rates of 2% and parallel 
reconstruction throttled to 10% of its peak bandwidth, the 
primary implication of our models is that data loss rates are 
measured in terms of a few bytes per year.  This alone sug-
gests that the high capital costs of triplication are not worth 
the factor of 10 improvement in reliability, if that improve-
ment is from 10 to 1 byte lost per year. 
This project was an initial exploration of reliability models 
for large-scale storage systems.  The results included in this 
report are promising; reliability modeling for HPC and in-
ternet services can be unified in a manner indicating that it 
should apply to other large scale storage systems.  A metric 
based on the amount of data lost annually is both viable and 
exposes intriguing new considerations – that small rates of 
data loss may be endurable, and apparently large differ-
ences, in terms of ratios, may “round off” to negligible 
differences.  Further exploration is recommended. 
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